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ABSTRACT

Performance models of the Space Shuttle Main Engine (SSME)

contain iterative strategies for determining approximate

_oiutiuns to nonlinear equations reflecting fundamental mass,

energy, and pressure balances within engine flow systems. Both

univariate and multivariate Newton-Raphson algorithms are

employed in the current version of the engine Test Information

Frogram (TIP). Computational efficiency and reliability of these

procedures is examined. A modified trust region form of the

multivariate Newton-Raphson method is implemented and shown to be

superior for off nominal engine performance predictions. A

heuristic form of Broyden's Rank One method is also tested and
favorable results based on this algorithm are presented.
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INTRODUCTION

Predictions of the steady-state operational characteristics

of the Rocketdyne Space Shuttle Main Engine (SSME) are provided

by computor programs which model and analyze engine sytem

performance. The Test Information Program (TIP) is a FORTRAN
based engine analysis software package which performs the

following functions.

I. Power Balance - Simulates engine performance by balancing
mass and energy flows for assumed nominal

operation of SSME components.

2. Data Reduction - Uses actual test data to define operating

characteristics of a specific SSME by

adjusting component performance parameters.

3. Base Balance - Refines operating predictions of the Data

Reduction portion by adjusting nine
performance variables.

4. Rated Portion - Extends refined performance model to

simulate actual engine operation over a

range of conditions.

TIF balances mass and energy flows during engine performance
prediction, and balances theoretical results with test

information to refine these predictions. Figure 1 displays the

SSME flow system network that is balanced by TIP to ensure
satisfaction of the conservation of mass and conservation of

energy principles as well as adherence to limitations impo_ed by
the Second Law of Thermodynamics.

Since flow processes within the SSME are governed by a set

of nonlinear equations, iterative techniques are required to

computationally predict a balanced steady-state flow condition.

Two subroutines within the TIP code perform iterative nonlinear
equation solving functions. These routines are described below.

TIP Iteration Subroutines

1. NLEST a single nonlinear equation root finding routine
CALL statement accessed as subroutine NLEST

ENTRY statement accessed as subroutine NLREST

NLEST - Find z such that

NLREST - Find x such that
(x-y) = F(z) = 0

(x-y) = F(x) = 0
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2. NLESTN - a simultaneous nonlinear equLtion solver
CALL statement accessed as subroutine NLESTN

NLESTN - Find x = (xl,x2 xN) such that

yl : FI(x) : 0

y2 : F2(x) = 0

-_.d

YN = FN(x) = 0

The basic function of TIP is to provide steady-state

operation and performance predictions. Engine flow conditions

are established by solving systems of nonlinear balance equations

arising from fundamental flow mechanics. Hence, use of the above

described solver routines is fundamental to and pervasive within

T_P _ evidenced by the ninty-four calls to NLEST (or NLREST) and
NLEST_ which occur in the current version of this performance

analysi_ package.

In addition to being pervasive, the iteration loops

initiated by calls to subroutines NLEST and NLESTN are programmed

in a complex sequence with considerable nesting and crossover.

As an example of this complexity, consider the itermtion loop

sequencing of subroutine BAL exhibited in Appendix I. Subroutine

8AL is the routing routine for the Power Balance component of

TIP. Significant iteration loop nesting, as many aS seven loops

deep, and loop crossover are apparent upon examination of this

listing.

OBJECTIVES

Because of the intrinsic importance of the iterative

nonlinear equation solvers in the TIP code, it is important that

these procedures be both reliable and efficient. The objectives
of this research effort are

I. To evaluate the iterative schemes employed within the TIP
performance model

2. I'o modify and test these schemes as suitable to achieve greater
reliability and efficiency

3. To perform s cursory review of fundamental TIP code logic and

procedure
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MOI_LINEAREQUATION SOLVERS

The nonlinear equation root finding scheme currently

employed in the TIP subroutine NLEST is a heuristic procedure

which combines a secant method search with a false positions

method (see e.g. Burden and Faires [i]). Initially the secant

method is used to update the root approximation. Whenever

successive applications of the secant method establish a bracket

about the root, NLEST switches to a false positions technique.

It is possible to lose the established root bracket due to loop

nesting and the accompanying effects of shifting due to inner

loop convergence tolerances. Because of this an ad hoc strategy
for switching between secant and false positions searches is

employed.
Within the context of the TIP code, the existing root

finding scheme in NLEST was tested against several other well

known procedures. The procedures implemented and teeted by this
author are listed below.

I. Finite difference Newton-Raphson

2. Secant (only)

3. False positions with step bracketing

4. Quadratic interpolation polynomial

In few instances were results superior to those obtained using

the current NLEST algorithm, and in many cases the overall

performance and convergence of the TIP code were adversely

affected. Hence, the heuristic root finding strategy implemented
within subroutine NLEST appears to be a robust and effective

method within the TIP performance analysis model.

The simultaneous nonlinear equation solver currently

implemented within subroutine NLESTN is a finite difference

multivariate Newton-Raphson method (often referred to as simply

Newton's method, see e.g. reference [I], page 496) with a
direction skewing trust region boundary. To evaluate the

effectiveness of this algorithm it is necessary to refer to the

theoretical basis of the Newton-Raphson method. This basis will
he outlined below.

XXVl_4 _'_



The fundamental problem addressed by simultaneous nonlinear
equation solvers can be expressed mathematically as follows.

Find x = ( xl, x2 xN )T in

such that F = (Fl(x), F2(x) FB(x) )T = O

or equivalently FI(x) = 0
F2(x) = 0

(1)

where

FN(x) = 0

F : RN_R N

At stage k the fundamental iteration of the Newton-Raphson

metl_od for solving problems of this type can be written

Xk+l = Xk_ j_l , Fk
where

F k : F(Xk)
and

Jk : the Jacobian of F evaluated at x k

(2)

Rapid convergence of the Newton-Raphson method to the solution of

(i) can be established rigorously if, for some k, x k is

sufficiently close to the solution vector designated x
_ormal conditions for convergence are stated in the following

theorem (see e.g. Rheinboldt [2] ).

Theorem.

If F has continuous first partial derivatives in some

neighborhood of &he solution x , if the Jacobian of F is

nonsingular at x and its elements s_tisfy a Lipschitz condition,
and if x k is sufficiently close to x for some k, then the
Newton-Raphson method is well defined for all k and conver_es at

second order, i.e. there exits a positive integer m and a

positive real number b such that

llFk+111 / lIFkl} 2 < b whenever k > m

Despite the second order (or quadratic) convergence

indicated in the above theorem, the Newton-Raphson method suffers

from two serious disadvantages from the point of view of

_'actical calculation. First, computation of the Jacobian matrix
_t each stage of the iteration is extremely costly in terms of

c_mputer resources. Often analytical partial derivatives are not
_vailable and finite difference approximations lack the precision

necessary for ultimate convergence. The second disadvantage of

the Newton-Raphson method arises from the need to have a

xxvt-5



sufficiently accurate initial estimate of the solution in order

to guarantee convergence. Satisfaction of this requirement is

impossible to measure before initiation of the iteration sequence
and often difficult to obtain in practice.

Extension of the basic Newton-Raphson procedure to include a

subiteration or line search have been somewhat successful in

removing the accurate initial estimate requirement. These

methods include a strategy to select a positive real number
lambda such that the iteration scheme

Xk+ I = xk + lambda * j_l , Fk (3)

reduces some measure of error, typically

iIFk+11f< IIFklf <4
at each stage. Although Newton-Raphson methods incorporating

line searches extend the domain of convergence, they do so with

significant computational overhead.

Trust region or restricted step methods are a compromise

between convergence limited self-scaling iteration procedures and

computationally intense methods incorporating line searches.

These methods simply provide an upper bound on the distance

between iteration steps. This bound may be absolute or scaled by

position within the domain of x.
The current version of subroutine NLESTN provides a

multivariate Newton-Raphson method with a trust region approach.

Unfortunately, the trust region bound is applied componentwise on
x which has the effect of skewing the correct Newton-Raphson

method search direction. This skewing process removes any

theoretical convergence characteristics and indicates the _-"

possibility of convergence difficulties when the iteration

procedure is initiated at a point remote from the immediate

vicinity of the solution. Difficulties of this type are

currently experienced as will be discussed in the next section.

In an effort to correct the skewing problem inherent in the

current version of NLESTN, a modified trust region form of the

multivariate Newton-Raphson method was implemented within TIP.

The basic iteration sequence of this method is given by

Xk+ 1 = xk - lambda * j_l , Fk (5)

where I ['PCTMAX * Xk"l (6>
lambda = min i, [IJffl , Fkil

PCTMAX is a user defined parameter which serves to scale the size

of the trust region. A comparison of search steps obtained
using the skewed direction trust region approach and the

corrected strategy are displayed in Figure 2. A complete listing

of the modified trust region form of NLESTN implemented within

TIP is given in Appendix 2. Results using this implementation

are presented in the next section.

A trust region form of the Broyden Rank One [3] nonlinear
system solver was also implemented and tested in an effort to

XXV'I-6
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Figure 2. Comparison of skewed trust region search vector and
correct trust region search vector.

XXVI-7



reduce the computational overhead associated with Jacobian

ea]culations and linear system solvers in the Newton-Raphson
algorithm. The Broyden Rank One method is a modified Newton-

Raphson iteration in which the Jacobian matrix is replaced by an

approximation B which is updated at each iteration by using

current information about F. In the Broyden strategy, a rank one
modification of B is made at each iteration. The basic method is

described below.

Basic Broyden Rank One Method

O. Select x o
Bo

the iteration starting point and

an N x N matrix approximation to the inverse

Jacobian of F at x o

For k : 0,1,2...

i. Evaluate F k

2. Set sk : - Bk * F k

3. Set Xk+ 1 : x k + s k

4. Evaluate Fk+ 1

5. Set Yk : Fk+l - Fk

6. If Yk : 0 Set

Otherwise set

where

Bk+ 1 = B k

Bk+ 1 = Bk + (s k - BkYk) * v T

vT = sT * Bk / ( sT * Bk * Yk)

Theoretical convergence properties of the basic Broyden Rank

One algorithm have been clarified by Gay [4,5]. Although not as

rapidly convergent theoretically as the Newton-Raphson method,

testing has often shown the Broyden technique to be superior [3].

A complete listing of the Broyden Rank One trust region form

of NLESTN implemented within TIP is given in Appendix 3. Results

using this implementation are presented in the next section.
Function minimization strategies have often been used to

solve nonlinear systems. A class of specialized minimization

techniques (see e.g. [6]) been developed which address least
_quares problems of the type

minimize F(x) T * F(x) by selection of x (7)

General nonlinear minimization algorithms can also be employed to

solve problems such as (7) which arise naturally from nonlinear

equation systems. These methods are typically computer intensive

although potentially effective and robust.

Although no testing of TIP performance using sophisticated

minimization methods was conducted, such techniques hold promise
for future application within engine performance models.
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COMPUTATIONAL RESULTS

Computations involving the TIP performance model were

conducted on the EADS network at Marshall Space Flight Center.

An IBM 3084 was the host processor. Within TIP, only Power

Balance sodel prediction analyses were run. Initializing input
data was fixed for all computations with the exception of

LOX-fuel ratio and power level expressed as a percentage of

engine rated power. Values for these flow characteristics were

speczJied within and outside of the nominal operating ranges
defined below.

Nominal SSME Operating Range

LOX-Fuel ratio

Power Level (%)

6.0 - 6.5

65- 109

Variation of these operating control parameters permitted an

evaluation of the function of the nonlinear equation solving
algorithms over a range of practical problems.

Output from a typical Power Balance model analysis is
extensive and includes many operating and performance

characteristics of the SSME subsystems. These physical data will

not be presented. Since the object of this investigation was to

test and evaluate performance model iteration methods,
computational performance data involving subroutines NLEST and

NLESTN were collected. These data were organized and presented
for each convergent Power Balance analysis as shown in Table i.

The prescribed values of mixture ratio and power level for the

specific analysis are displayed at the top of this table. In

addition, the univariate and multivariate iteration procedures
used in the particular analysis are presented. Performance

evaluation data for each iterative procedure are presented as
described below.

NLEST Loop Summary Information

Loop
Entered

Closed

Max

Average

- iteration loop identification number

- number of times specific iteration loop was entered

- number of times specific iteration loop successfully
converged and closed

- maximum number of iterations required for convergence
of specific iteration loop

- average number of iterations required for convergence
of specific iteration loop



Table i. Iteration loop performance data for a typical Power

Balance model analysis.

MIXTURE RATIO - 6 .5 POWER LEVEL - 109 %

NLEST ORIGINAL

NLESTN - BROYDEN RANK ONE

NLEST LOOP SUMMARY LOOP ENTERED CLOSED MAX AVERAGE

1 71 67 3 1.060

2 67 59 3 1.136

3 589 294 3 2.003

5 6 3 2 2.000

6 10 5 2 2.000

7 434 428 3 1.014

8 315 174 3 1.810

9 87 69 2 1.261

11 149 67 7 2.224

12 788 428 2 1.845

14 1002 550 4 i.$2_

15 550 294 3 1.871

16 1029 510 5 2.018

17 119 69 3 1.725

18 1100 428 4 2.590

19 657 290 5 2.266

20 679 290 4 2.341

21 13 5 3 2.600

23 1113 428 4 2.600

24 2108 720 3 2.928

25 861 428 3 2.012

26 1698 788 3 2.155

27 1737 856 3 2.029

28 977 428 4 2.2E3

30 117 69 3 1.696

31 5528 2517 3 2.196

32 191 69 8 2.768

35 442 69 8 6.406

36 3 1 3 3.000

37 5 1 5 5.000

38 429 428 2 1.002

39 191 191 1 1.000

40 5 1 5 5.000

42 856 428 2 2.000

43 69 19 6 3.632

45 69 69 1 1.000

46 769 408 _ 1.885

48 388 294 2 1.320

49 431 294 2 1.466

50 174 87 2 2.000

60 594 360 2 1.650

61 177 122 3 1.451

62 122 67 3 1.821

67 3 1 3 3.000

70 4 1 4 4.000

NLESTN SUMMARY LOOP ENTER JACOB CLOSE MAX JE/C LP/C

1 510 157 149 5 1.054 3.423

2 19 8 1 8 8.000 19.000

3 769 361 156 3 2.654 5.654

4 294 65 69 3 0.942 4.261

5 286 79 69 3 1.145 4.145

6 3375 675 675 i 1.000 5.000

.--J
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NLESTN Loop Summary Information

Loop
Enter

Jacob

Close

Max

JE/C

LP/C

- same as above

- same as above for entered

- total number of Jacobian or Jacobian approximation

evaluations

- same as above for closed

- same as above

- average number of Jacobian evaluations per convergent

iteration

- average number of iteration loop passes per

convergent iteration

The amount of effort expended in iteration processes is

evident from Table i, with over 15,000 univariate loop entries

and over 5,000 multivariate loop entries documented for this

specific Power Balance analysis in order to achieve convergence.

This effort level is typical of convergent analyses performed in

this study.

In order to compare the efficiency and reliability of

various NLESTN implemented multivariate nonlinear equation

solving methods, the total number of NLESTN loop entries was

tabulated for each of several analyses using different

multivariate iteration strategies. These data are presented in

Table 2. Examination of the information in Table 2 suggests the

following

Conclusions Based on Table 2 Data

i. The current (N-R Orig) Newton-Raphson implementation often

fails to converge for mixture ratios or power levels outside

the nominal region. This result was expected since the

direction skewing trust region method forces the iteration

sequence to take less appropriate steps for conditions that
cause the solution to be further removed from the initiation

data. It is notable that within the nominal region for

mixture ratio and power level, the current Newton-Raphson
implementation performs almost the same as the modified

method _N-R Mod). This occurs because within the nominal

operating range, the trust region boundary is not reached

during the search process since the initiation data is close

to the converged solution.

2. The modified Newton-Raphson method (N-R Mod) with corrected

trust region is more efficient, requiring fewer total NLESTN

loop passes, for conditions outside and on the boundary of

the nominal regions for mixture ratio and power level. This

is due to the corrected search direction method employed at

the trust region boundary. In addition, the modified Newton-
Raphson method is more reliable than the original method,

converging for several cases with outside nominal mixture

_atios or power levels.
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3. The Broyden Rank One method implementation is extremely

reliable, having converged for all cases considered.
The efficiency of this method is somewhat erratic, often

requiring substantially fewer loop passes for convergence than K

the Newton-Raphson methods and yet occasionally _equiring

substantially more effort to arrive at a converged solution.

This erratic behavior was not wholly unexpected due to the

approximate nature of the Jacobian estimate employed and

updated by the algorithm.

Further comparisons of the modified Newton-Raphson and

Broyden Rank One methods with the current NLESTN implementation

are presented in Table 3. Results are presented only for

analyses in which the current multivariate iteration strategy

achieved convergence. The improved efficiency gained by use of

the modified Newton-Raphson method outside the nominal operating

range is again evident. The erratic efficiency of the Broyden

method is clearly displayed.
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Table 2.

MR

6 0

6 0

6 011

6 5

6 5

6 6

6 7

6 8

8 5

8 5

6 5

Loop passes through multivariate subroutine NLESTN.

PL(%) N-R Orig N-B Hod Broyden

65 9,077 9,077 2,527

i00 10,586 10,586 6,099

104 4,993 4,993 14,711

104 9,152 9,152 6,515

109 13,308 7,209 5,253

109 F 11,491 8,009

109 F 11,514 13,434.

109 F 24,935* 10,303.

112 11,757 11,723 13,309

115 15,118 12,213 21,829

120 F F 7,809

F - Failure to converge to specified tolerance in allowed number
of iterations

* - Trust region interval reduced to +- 5% of current independent
variable value

Table 3. Change (%) in number of loop passes through subroutine

NLESTN using the original Newton-Raphson method results
as standard.

HR

6 0

6 0

6 011

6 5

6 5

6 5

6 5

Z Change

PL(%) N-R Hod Broyden

65 0 - 72.2

I00 0 - 42.4

104 0 + 194.6

104 0 - 28.8

109 - 45.8 - 60.5

112 - 0.3 + 13.2

115 - 19.2 + 44.4
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RECOMMENDATIONS

The following recommendations for improvement of the

[terative procedures within the Test Information Program are

motivated by the computational results described in the previous
section of this report and by investigation of TIP logic.

Recommendations for Improvement of Iterative Procedures

I. Immediately implement modified multivariate Newton-Raphson

method with corrected trust region approach in subroutine

NLESTN. The subroutine described in Appendix 2 is one

implementation of this method.

2. Continue to test and refine the potentially effective Broyden
Rank One method for the iterative solution of simultaneous

nonlinear equations. The subroutine described in Appendix 3

is one implementation of this method.

3. Perform computational experimentation using flexible loop

tolerances and flexible trust region bounds in the iterative
routines. These modifications could substantially improve

the efficiency of the TIP iteration sequence.

4. Incorporate and test a formal line search algorithm within the
multivariate iteration scheme to enhance convergence and

reliability for strongly off nominal engine operation.

5. Perform a detailed sensitivity analysis of all iteration loop

independent variables to determine uncertainty limits

associated with loop tolerances.

6. Review iteration loop logic sequencing. Modify and test

sequencing to achieve improved computational efficiency.

In addition to the recommendations involving computational

procedure listed above, a limited review of the TIP code
n_ot_vates the structuring recommendations provided below.

Code Structuring Recommendations

I Clearly identify and separate TIP program components.

Theoretical base (flow physics)

Computational base (formal numerical algorithms)

Experimental base (engineering performance parameters and

other approximations)

xxvi-14



2. Clearly identify the following.
Independent variables of model analysis (user defined and

controlled physical inputs)

Arbitrarily prescribed and constant parameters of model

analysis (code designer defined and restricted input)

Dependent variables of model analysis (solution variables

requiring initial approximation)

3. Review prescribed flow and performance variable dependencies

in model for accuracy and completeness.

4. Formalize an organized data input structure descriptive of

SSME flow systems, i.e. number nodes, branches, and devices

and formally identify connectivity within the data structure.

5. Fully document TIP program physical logic sequence.

S. C_nstruct postprocessors that clearly exhibit physical

balances for appropriate engine subsystems as a means of
verification

These recommendations are very basic and if implemented will

improve confidence in and reliability of TIP analysis results.
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Appendix i. Iteration loop sequencing in subroutine BAL

TIP88_C 22 JUN 89

SUBROUTINE BAL - ITERATION LOOP SEQUENCING

LINE ITERATION

NO TYPE NO

1234567890123456

VARIABLES TOL

X Y Z

207

232

255

267266NLEST<i,[ I293 NLEST (21

294

3zo CALL PBrLOW I
312 CALL PBrLow I
330 CALL PBFLOW I

336 CALL PREBRN [

345 CALL PBFLOW [

353 CALL PREBRN I

361 CALL PRESRN--_---

364 CALL PREBRN--_---

367 .............. 4--"

373_

387 NLREST 61 I
388_

392 NLREST 62

393

--I I

l I
I I _x
t I
I I
t I
t t

415 .....

427 NLREST 60 |
I428

441

442 NLEST ( 24 ) I

I443

447, I
448 NLEST (24)

449

454 ....................

461
|

462 NLEST {25) I

I463

47_68 1 ICALL PRZS2 [

478 NLEST ( 7 )

479 I

499493 I
NLREST (18) I

5O0

I

12_45_7_9

I HFF HFFPB

I HFO HFOPB

I
Pfl2 PJ2X

I H2FT2M X

I
H2FTMA X

I
i H2OT2M X

i

FEP PNS 0.00001*FO

RMEP RMC 0.000001

i X

I

I WBAFC

t I
I

12345_

PFPIN

WBAFCI

0.0001

0 .0001

0.2

T2FT2M 0. 2

TFT2MA 0 , 2

T2OT2M 0. 2

SPLIT2 0.02

0.001

-_j
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12345678

I

so4 I Iso6 .LREs,23)
507 I

,32 i_ii,

533 NLEST 26)

534 I

535 CALL PRES2

5_6 RLREST 12) |

537

544 1
545 NLKST 27)

546

547 CALL PRES2

548 NLREST 42)

549

557. i
558 NLEST 28

559

565 I568 NLREST 38

569

573

574 ]580 NLEST (16

581

584 NLESTN (i)

j--590 ..................
591

I 629 NLEST (Iii

i 630
635 CALL H2PUMP

668 CALL OT2
671 CALL FT2

i 6fl7 !
692 NLREST (45) I

I 693 I

I 701
709 J

1 720 NLREST <3g)i
722 . ,

i 733 !
737 NLREST (46) i

] 738 I

i 745 NLEST (32)

I 746

751 NLREST (47)
752

I

II
I

I
I

I
I
I

I
I

_J

12:4561

I
TPFC

i

Ix
[

i PEXC

Ix
I

i PEXCO

I
X

i

0.01

0.02

0.02

0.005

0.02

0.005

TPFCI

H2FHGM TEXC

PEXCP

H2OHGM TEXCO

PEXCOP

HINJ TINJ

i ROIFPI ROL'PI 0.0001

I
i PIFTI PIFTIP PRFT1 0.1

I P2TFTI (PINJ-PIN3P) 0.2

i P2TOT2 (PINJP-PINJPI) 0.i
P2TFT2 (PIE-PIEP} 0.2

i

I HPFTI HPFPl ENFTI O.O001*HPFPI

I

I

I I

II
P J1 PJIX 0. 2

I i
I I X {PMIX2-PMIX1) SPLIT1 0.05

i I

I i. oow ox ooo,
12_45_<7__89_0121a._5_
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[ 123456789112_456 I

f75, I I I
,,-765.............. 1 ........... 1 I

767 NLREST <4";'_ /
_6a • I I

801 i
819 NLEST (35)

820

844 NLREST (43)

845

J J P6B

P4

I I
I

WOPBHG

PCLIM

j DPOX
J DPFUEL

PEXTCJ PEXJ2 0.01

P6P WOIGN 0.0001"P6

P4P 0.5

860 NLESTN (9)

I
I
I

I
I --8v4..........................J

I 8_6 NLEs":_ _8) I J WFT2

j ! I .o.s,,_
TPBO

I I I ,_,..,EP
! I I DPFU'.L

J J OP2NSS

I r_886 .......................... Jt I
J J 888 NLESTN r 7) WFT2

, I J wOP_HG

I I i pCLi.
II _ I j o,ox

j OP2NSS

11_898..........................j J
J I 900 NLEST:; , 21 WFT2

J TPB

] [ I ] TPBO

L L9_9.............................. j o,_
--910

912 CALL PBIGN

P9-P91) 1.0

P2MFV-P3P) 1.0

P�-P9P) 1.0

P6-P6X) 1.0

P4-P4X) 1.5

P4-P4FU) 1.5

P9-P91) 1.0

P2MFV-P3P) 1.0

P9-P9P) 1.0

P6-P6X) 1.0

P4-P4FU) I 0

OP2NSS-OP2SS) I0.0

P9-P91) 1 0

P2MFV-P3P) I 0

P9-P9P) 1 8

P6-PSX) 1 0

P4-P4X) 1 0

OP2NSS-OP2SS) 10 0

P�-P91) 0.I

P2MFV-P3P) 0.i

P9-P9P) 0.i

P6-P6X) 0.i

OP2NSS-OP2SS) ]0.0

i234567890123456
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_ppendix 2. Subroutine NLESTN implementation with corrected

trust region Newton-Raphson method.

C ********************** CODE DESIGNATION TRUST ***********************

C

SUBROUTINE NLESTN (ID,N,A,KK,XI,YI,TI,FI,X2,Y2,T2,F2,X3,Y3,T],F3,

+ X4,Y4,T4,F4,XS,YS,TS,F5,X6,¥6,T6,T6)

C

IMPLICIT REAL*8(A-H,O-Z)

C

C -NLESTN- 2- TO 6-DIMENSIONAL MULTIVARIATE NEWTON-RAPHSON METHOD fOR

THE ITERATIVE SOLUTION OF SIMULTANEOUS NONLINEAR ALGEBRAIC

EQUATIONS.

CALL STATEMENT...

CALL NLESTN (ID,N,A,KK,X1,YI,T1,FI,X2,Y2,T2,F2 .... XN,YN,TN,FN)

...WHERE N IS )-6.

ID IS THE ITERATION LOOP NUMBER (MINIMUM VALUE = I, MAXIMUM

VALUE = i0). EACH NUMBER OF A NEST OF LOOPS MUST HAVE A DIFFERENT

LOOP NUMBER, BUT OTHERWISE LOOP NUMBERS ARE ARBITRARY WITHIN THE

ABOVE LIMITS.

N IS THE NUMBER OF INDEPENDENT VARIABLES TO BE ITERATED UPON

(XI,X2...XN) IN ORDER TO DIMINISH THE DEPENDENT VARAIBLE ERROR

VALUES (YI,Y2...YN) TO WITHIN SPECIFIED TOLERANCES (TI,T2...TN}.

NOTE- 2 <= N <= 6.

IFI,F2...FN) ARE INDEPENDENT VARIABLE INCREMENT MULTIPLIERS

USED IN THE FINITE DIFFERENCE APPROXIMATIONS FOR THE JACOBIAN

MATRIX PARTIAL DERIVATIVES.

A IS AN N-BY-N MATRIX DIMENSIONED IN THE CALLING PROGRAM.

KK IS A FLAG AS FOLLOWS...

KK=-3 SINGULAR MATRIX.

KK=-I ALLOWABLE NUMBER OF ITERATIONS HAS BEEN EXCEEDED.

KK= 0 ALL Y'S ARE LESS THAN TOLERANCE, ITERATION COMPLETE.

KK= [ ONE OR MORE Y'S ARE GREATER THAN TOLERANCE, REITERATE.

INCLUDE (I_;SAVE)

INCLUDE I DPSAVE)

DIMg_;.$ I,_U B,' 36 ) ,SXI 6) ,SY(6) ,ST(6) ,SF(6) ,SDF(6)

DIMENSION DI6,6),A(N,N),C(36)

DATA LI_![T, PCTNAX/20, 0. 2/

C

C '****"+ _* _'_ _**''*****_* ARRAY INITIALIZE SUBROUTINE INPUT ARGUMENTS

3:.[_ l

SX_

S X _i 7

S X (

SX! 5

SX(6

C

SY(I

SY(2

SY(3

SY(4

5¥(5

SYI6

:k'l

=i<2

=X3

=[< 5

=:'[6

=YI

=Y2

=Y3

=Y4

=Y5

=Y6
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ST(1)=TI

ST(2)=T2

ST(3)=T3

ST(4)=T4

ST(5)=T5

ST(6)=T6

SF(1)=F1

SFI2)=F2

SF(3)=FB

SF(4)=F4

SF(5)=F5

SF(6)=F6

C

C *************************************** STEP I. CHECK FOR CONVERGEWCE

L=LOOPN(ID)

NUMN(ID,I)=NUMN(ID,1}+I

ICONV=0

DO I0 I=I,N

IF (ICONV.GT.0) GO TO 10

IF (DABS(SY(I)).GT.DABS(ST(I))) ICONV-I

i0 CONTINUE

IF (ICONV.GT.0) GO TO 20

NUMN(ID,3)=NUMN(ID,3)+I

NUMN(ID,4)=MAX0(NUMN(ID,4),KOUNL(ID))

KOUNL(ID)=0

KK=0

GO TO 200

C

C ****************************** STEP 2. CHECK FOR EXCESSIVE ITERATIONS

20 IF (EOUNL(ID).LT.LIMIT) GO TO 30

WRITE (4,901) LIMIT,ID,(SY(1),ST(I),SX(I),I=I,N}

901 FORMAT (

+ IH ,'ERROR IN NLESTN, NO SOLUTION WITHIN' ,I3, 'ITERATIONS' ,/,

+ IH ,'FIRST ARGUMENT IN THE CALL STATEMENT IS' ,I5,/,

+ IH ,'ERROR VALUES TOLERANCES INDEPENDENT VARIABLES',/,

+ 3(G15.6))

K=I

GO TO 150

C

C _*_*_*_" _*_*_*_*_** STEP 3. INITIALIZE ITERATION SEQUENCE

30 DO 40 I=I,N

40 SDF(I}=SF(1)-I.O

IF (L.GT.0) GO TO 60

L=0

DO 50 I=I,N

A(I,N>=SY(1)

50 A(I,N-I)=SX{I)

KOUNL(ID)=KOUNL(ID)+I

NUMN(ID,2)=NUMN(ID,2}+I

GO TO 180

C

C ********************************** STEP 4. ESTIMATE JACOB'IAN PARTIALS

60 IF (L.LT.N) GO TO 80
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DO 70 I=I,N

70 B(I)=A(I,N)

80 SX(L)=SX(L)/SF(L)

DP=SX(L)*SDF(L)

DO i00 I=l,N

I00 A(I,L)=(SY(I}-A(_,N))/DP

IF (L.LT.N) GO TO 180

C

C ********************* STEP 5. DETERMINE NEWTON-RAPBSON STEP INCREMENT

C COLUMN 1 OF ARRAY D AS RETURNED FROM

C FUNCTION ROUTINE ISIMDD IS THE DOT

C PRODUCT OF THE INVERSE 3ACOBIAN WITH

C THE DEPENDENT VARIABLE VECTOR

C (YI,Y2...YN)

110

DO ii0 I=I,N

DO ii0 J=I,N

D(I,J)=A(I,J)

SCALE=0.

K=ISIMDD 16,N,I,D,B,SCALE,C)

C

C ********************************* STEP 6. CHECK FOR SINGULAR 3ACOBIAN

IF (K.EQ.I) GO TO 150

WRITE (4,902) K,ID,KOUNL(ID)

902 FORMAT(IH0,'ERROR IN NLESTN, MATRIX FAILURE USING ','%SIMDD,',

+ ' ERROR INDICATOR IS',I3,/,

+ IH ,'FIRST ARGUMENT IN THE CALL STATEMENT IS',I5,

+ ' LOOP COUNTER IS',I3,

+ ' THE COLUMN AND SQUARE MATRICES FOLLOW')

DO 120 I=I,N

120 WRITE (4,903) B(I),(A(I,J),J=I,N)

903 FORMAT(IH ,Gi4.6,5X,6(GI4.6})

130 DO 140 I=i,10

KOUNL(1)=0

140 LOOPN(I}=0

KK=-K

GO TO 210

C

C ********* STEP 7. INCREMENT INDEPENDENT VARIAHLES WITHIN TRUST REGION

150 FACT=I.0

DO 160 I=I,N

TFACT=DABS_D(I,I) )/(PCTMAX*DABS(SX(I) ) )

160 IF (TFACT.GT.FACT) FACT=TFACT

DO 170 I=I,N

170 SX(1)=SX(I ,-D(I,I)/FACT

L=0

GO TO i90

C

C ****** STEP 8. RESET ARGUMENT LIST INDEPENDENT VARIABLES AND COUNTERS

i80 L=L+I

SX(LI=SX(L)*SF(L}

KK=L+I190

C

C

2OO

C

210

XI=SX(1)

X2=SX(21

X3=SX(3)

X4=SX(4)

X5=SX(5)

X6=SXI6>

LOOPN(ID)=L

RETURN

END
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Appendix 3. Subroutine NLESTN implementation with trust

region Broyden Rank One method.

C

C

C

C

C

C

C

C

C

C

C

C

C

- C

C ********************* CODE DESIGNATION BROYDEN **********************

C

SUBROUTINE NLESTN (ID,N,A,KK,X1,Y1,TI,FI,X2,Y2,T2,F2,X3,Y3,T3,F3,

+ X4,Y4,T4oF4,X5,Y5,TS,FS,X6,Y6,T6,F6)

C

IMPLICIT REAL*8(A-H,O-Z)

C

C -NLESTN- 2- TO 6-DIMENSIONAL BROYDEN'S (GOOD) RANK ONE METHOD FOR

THE ITERATIVE SOLUTION OF SIMULTANEOUS NONLINEAR ALGEBRAIC

EQUATIONS.

CALL STATEMENT...

CALL NLESTN (ID,N,A,KK,XI,YI,T1,FI,X2,Y2,T2,F2 .... XN,YN,TN,FN)

...WHERE N IS )_6.

ID IS THE ITERATION LOOP NUMBER (MINIMUM VALUE z i, MAXIMUM

VALUE = i0). EACH NUMBER OF A NEST OF LOOPS MUST HAVE A DIFFERENT

LOOP NUMBER, BUT OTHERWISE LOOP NUMBERS ARE ARBITRARY WZTHIN THE

ABOVE LIMITS.

N IS THE NUMBER OF INDEPENDENT VARIABLES TO BE ITERATED UPON

(XI,X2...XN} IN ORDER TO DIMINISH THE DEPENDENT VARAIBLE ERROR

VALUES (YI,Y2...YN) TO WITHIN SPECIFIED TOLERANCES (TI,T2...TN).

NOTE- 2 <= N <- 6

(FI,F2...FN) ARE INDEPENDENT VARIABLE INCREMENT MULTIPLIERS

USED IN THE FINITE DIFFERENCE APPROXIMATION TO THE JACOBIAN

MATRIX AT SELECTED STAGES.

A IS AN N-BY-N MATRIX DIMENSIONED IN THE CALLING PROGRAM.

KK i5 A FLAG AS FOLLOWS...

KK=-3 SINGULAR MATRIX.

EK=-i ALLOWABLE NUMBER OF ITERATIONS HAS BEEN EXCEEDED.

KK= 0 ALL Y'S ARE LESS THAN TOLERANCE, ITERATION COMPLETE.

KK= i ONE OR MORE Y'S ARE GREATER THAN TOLERANCE, aEITERATE.

INCLUDE (INSAVE)

INCLUDE !DPSAVE)

DIMEHSION NBROY(10),SX(6),SY0(10,6),SY(6),ST(6),SF(6),SDF(6)

DIHEHSION AiN,N) ,C(16) ,SK(10,6) ,SID(6,6)

DATA LIHIT, PCTMAX,SMNUM/50,0. 2, i. 0D-8/

?

C _ _ _ _'_" _ _" _ _ _ _'_***''**_ ARRAY INITIALIZE SUBROUTINE INPUT ARGUMENTS

S:<' I =:_!

5 X ,: 2 = ;t "

S Y ' 4 = k

S;'.(5 '=X5

C

SY( i =YI

SY( 2 I=Y2

SY(3!=Z3

SY ( 4 _ =Y4

SY(5}=Y5

SY_6)=Y6

oRIGINAL pAGE IS

OF POOR QUALITY
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ST

ST

ST

ST

ST

ST

I>=TI

2)=T2

3)=T3

4)=T4

5)=T5

6)=T6

OF pOO'R _j_i.tT_'

SF(1)=FI

SF(2)=F2

SF{3)=F3

SF(4)=F4

SF(5)=F5

SF(6)=F6

C

C *************************************** STEP 1. CHECK FOR CONVERGENCE

L=LOOPN(ID)

NUMN(ID,1)=NUMN(ID,1)+I

ICONV_0

DO I0 I=I,N

IF (ICONV.GT.0) GO TO 10

IF (DABS(SY(I)).GT.DABS(ST I))) ICONV=I

i0 CONTINUE

IF (ICONV.GT.0) GO TO 20

NUMN(ID_3)=NUMN(ID,3)+I

NUMN(ID,4)=MAX0(NUMN(ID,4) KOUNL(ID) )

KOUNL(ID)=0

KK=0

GO TO 200

C

C ****************************** STEP 2. CHECK FOR EXCESSIVE ITERATIONS

20 IF (KOUNL(ID).LT.LIMIT) GO TO 30

WRITE (4,901) LIMIT,ID,(SY I) ,ST(1) ,SX(1) ,I=I,N)

• 901 FORMAT (

+ IH ,'ERROR IN NLESTN, NO SOLUTION WITHIN' ,I3,'ITERATIONS' ,/,

+ IH ,'FIRST ARGUMENT IN THE CALL STATEMENT IS',I5,/,

+ IH ,'ERROR VALUES TOLERANCES INDEPENDENT VARIABLES',/;

+ _IGLS.6))

K=I

GO TO [30

C

C *************************** STEP 3. DECIDE ON ITERATION PROCEDURE FOR

C CURRENT PHASE

C NBROY(ID)=0 NEWTON-RAPHSON STEP

C NBROY(ID)>0 BROYDEN RANK I STEP

30 IF !KOUNL{ID) .LE.0) NBROY(ID)=0

IF (NBROY(ID) .GT.0) GO TO 300

C

C *************************** STEP 4. INITIALIZE ITERATION SEQUENCE FOR

C MULTIVARIATE NEWTON-RAPHSON STAGE

DO 40 I=I,N

40 SDF(I}=SF(I)-I.0

IF (L.GT.0) GO TO 60

L=0

DO 50 I=I,N
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50 SY0(ID,I)=SY(I)

KOUNL_ID)=KOUNL(ID)+I

NUMN(ID,2)=NUMN(ID,2)+I

GO TO 180

C

C ********************************** STEP 5. ESTIMATE JACOBIAR PARTZAL_

60 SX(L)=SX(L)/SF(L)

DP=SX(L)*SDF(L)

DO i00 I=l,_

100 A(I,L)=(SY(I)-SY0(ID,I))/DP

IF (L.LT.N) GO TO 180

C

C *************************** STEP 6. DETERMINE INVERSE JACOBIAN MATRIX

C MATRIX [A] AS RETURNED FROM

C FUNCTION ROUTINE ISIMDD IS THE

C INVERSE 3ACOBIAN APPROXXMATION

SCALE=0.

K=ISIMDD (N,N,-N,A,SID,SCALE,C)

C

C ********************************* STEP 7. CHECK FOR SINGULAR JACOBIAN

IF (K._Q.I) GO TO 150

WRITE (4,902) K,ID,KOUNL(ID)

902 FORMAT(IH0, 'ERROR IN NLESTN, MATRIX FAILURE USING ','ISIMDD,',

+ ' ERROR INDICATOR IS',I],/,

+ IH ,'FIRST ARGUMENT IN THE CALL STATEMENT IS',IS,

+ ' LOOP COUNTER IS',I3,

+ ' THE COLUMN AND SQUARE MATRICES FOLLOW')

DO 120 I=I,N

120 WRITE 14,903} SY0(ID,I), (A(I,J),JmI,N}

903 FORMAT(IH ,GI4.6,5X,6(GI4.6))

130 DO 140 I=l,10

KOUNL(1)=0

140 LOOPNII)=0

KK=-K

GO TO li0

C

C _*****"*_ STEP 8. INCREMENT INDEPENDENT VARIABLES WITHIN TRUST REGION

150 DO 155 I=I,N

SK(ID,I i=0.0

DO 155 J=l,_

155 SK(ID, [i=SE<ID,I)-A(I,J)*SY0(ID,J)

FACT=I.0

DO 160 I=l,;_

_FACT=DABS<SK(ID,I)/(PCTMAX*SX(I) ))

160 IF <TTACT.GT.FACT) FACT=TFACT

DO 170 I=I,N

SKIID,I)=SK!ID,I)/FACT

170 SX(I,=SX! I)+SKIID,I)

L=0

NBROY(ID)=I

GO TO 190

C

C ************************* STEP 9. PROVIDE BROYDEN RANK O_E UPDATE FOR

C INVERSE 3ACOBIAN APPROXIMATION

300 KOUNL(ID)=KOUNL(ID)+I
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NUMN(ID,2)=NUMN(ID,2)+I

SBY=G.

DO 320 I=I,N

SB=0.

DO ]i0 J=I,N

310 SB-SS+SK(ID,J)*A(J,I)

320 58Y=SSY+SB*(SY(1)-SY0(ID,I))

IF (DABS(SBY).LT.SMNUMI GO TO 355

DO 350 I=I,N

BY=0.

DO 330 II=I,N

_30 BY=BY_A(I,III*(SY(III-SY0(ID,II))

DO ]50 J=I,N

SB=0.

DO 340 JJ=i,N

]40 SB=SB_SK(ID,JJ)*A(JJ,3)

]50 A(I,JI=A(I,J)+(SK(ID,I)-BY)*SB/SB¥

355 DO 360 I=I,N

SK(ID,I)=0.

DO 360 J=I,N

360 SK(ID,I)=SK(ID,I)-A(I,J)*SY(3)

FACT=I.0

DO 370 I=I,N

TFACT=DABS{SK(ID,I)/(PCTMAX*SX(I)))

370 IF (TFACT.GT.FACT) FACT=TFACT

DO 380 I=I,N

SK(ID,I)=SK(ID,I)/FACT

SX(1)=SX{I)+SK(ID,I)

380 SY011D,I)=SY(I)

NBROY(ID)=NBROY(ID)+I

IF (NBROY(ID) .GT.N) NBROY(ID)=0

L=0

GO TO 190

C

C ****_ STEP

180 L=L+I

190

C

i0. RESET ARGUMENT LIST

SXILI=SX(L}*SFILI

KK=L+I

XI=SX(I

X2=SX(2

X3=SX{I

X4=SX{4

X5=SXi5

X6=SX(6

LOOP}|< ID)=L

RETURN

END

C

200

C

210

INDEPENDENT VARIABLES AND COUNTERS
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